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Introduction

• Demand response demonstrates potentials to enhance the power system’s
operational flexibility in a cost-effective way.

• Advantages of Industrial Loads in DR
• Infrastructure: Most industrial loads have already installed the

infrastructures for control, measurement, and communications which are
necessary for demand response.

• Response: The adjustments of the power consumption from many
industrial loads can be very large, fast, and accurate.

• Economic Incentive: The industrial loads are also strongly motivated to
participate in demand response programs even at the cost of increasing their
operation complexity, as making profits is their primary concern.

• Examples
- smelting pots, furnaces, fans, freezers, pumps, mills, crushers, etc.

• Challenges for Industrial Demand Response
- reliability, complexity, granularity

• Granularity Restriction
- Most of these industrial loads can only provide power changes in a discrete
manner, e.g. the power change is several MWs at a time.
- This coarse granularity hinders those industrial loads from providing the most
valuable ancillary services, as regulation and load following in the current
electricity markets require a continuous change of power.

• Research Objective
- Fully utilize the DR potentials from the industrial loads.
- Overcome the granularity restriction.

Coordination by Model Predictive Control
• Main Idea: support by on-site energy storage

• industrial machines: large/discrete power change, main body
• on-site storage: fine/continuous power change, handle mismatch

Figure 1: MPC coordination framework.

Prediction

Figure 2: Prediction mean squared errors.

Figure 3: Regulation signal (AGC) over one hour and its prediction.

Optimal Control
• Objective

minimize ∑
i∈H

(αvi+β si)+ γd (1)

• Regulation Violation
vt+i ≥ |B+Rω̂t+i−Pmxt+i− yt+i| ∀i ∈ H (2)

• Machine Switching
si ≥ |xt+i− xt+i−1| ∀i ∈ H (3)

• Storage Level Deviation
d ≥ |et+H− e| (4)

• Storage Energy Balance
et+i− et+i−1 = yt+iδ ∀h ∈ H (5)

• Switching Limitation
t−1

∑
j=t+i−L

s̃ j +
t+i

∑
j=t

s j ≤ s̄ ∀i ∈ H (6)

• Variable Ranges
xt+i ∈ {0,1, ...,n} and −Ps ≤ yt+i ≤ Ps ∀i ∈ H (7)

Case Study

• Simulation Setup
- industrial machines: 4*2MW
- on-site storage: E = 1 MWh, Ps = 3 MW
- provide regulation R = 6 MW at baseline B = 4 MW

• Result
- accurately provide a large range of regulation
- over the hour: only 12 switches and 0.12 MWh violation integral

Figure 4: Simulation results with increased penalty on switch actions.

Conclusion

• Fully Utilize Industrial Loads’ DR Potentials
- add more balancing resources to power system
- encourage loads to be more active in DR

• MPC Coordination Framework
- “the whole is greater than the sum of its parts”
- many potential applications
e.g. the coordination among fast/slow generators, buildings, storage, ...
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