Model Predictive Control of Industrial Loads and **Energy Storage for Demand Response**

Xiao Zhang¹, Gabriela Hug², J. Zico Kolter³, Iiro Harjunkoski⁴

¹Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, USA ²Information Technology and Electrical Engineering, ETH Zurich, Switzerland ³Computer Science, Carnegie Mellon University, Pittsburgh, USA ⁴ABB Corporate Research, Ladenburg, Germany

- operational flexibility in a cost-effective way.
- Advantages of Industrial Loads in DR
- necessary for demand response.
- industrial loads can be very large, fast, and accurate.
- Examples
- Challenges for Industrial Demand Response
- reliability, complexity, granularity
- Granularity Restriction
- manner, e.g. the power change is several MWs at a time.
- electricity markets require a continuous change of power.
- Research Objective
- Overcome the granularity restriction.

- Main Idea: support by on-site energy storage

Carnegie Mellon University

- industrial machines: 4*2MW
- on-site storage: E = 1 MWh, $P_s = 3$ MW
- Result

- many potential applications

- Contact: xiaozhang@cmu.edu

· • · • · • · • · • · • · • · • · • · •		- accurately provide a large ra
quared errors.		- over the flour. Only 12 switch
		trol
$\beta s_i) + \gamma d$	(1)	
$-y_{t+i} \forall i \in H$	(2)	 Fully Utilize Industrial Loads'
$\forall i \in H$	(3)	 add more balancing resource encourage loads to be more
	(4)	 MPC Coordination Frameworl "the whole is greater than t

- (5)
- (6)
- (7)

Case Study

- provide regulation R = 6 MW at baseline B = 4 MW

ange of regulation ches and 0.12 MWh violation integral

Conclusion

DR Potentials ces to power system active in DR

- "the whole is greater than the sum of its parts"

e.g. the coordination among fast/slow generators, buildings, storage, ...

Acknowledgement

The authors would like to acknowledge the financial support by ABB.

- Relevant work available at http://www.xiaozhang.work/