Computational Approaches for Efficient Scheduling of Steel Plants as Demand Response Resource

Xiao Zhang¹ Gabriela Hug² J. Zico Kolter¹ liro Harjunkoski³

¹Carnegie Mellon University ²ETH Zurich ³ABB Corporate Research

PSCC 2016, Geona, Italy

Demand Response

- The goal: sustainable energy future and a green planet
 - renewable generation: wind turbines, solar panels, etc.
 - however, power output uncertain
 - need more balancing power
- Power balance
 - generation equals demand
 - traditional balancing power: generators
 - generators frequent adjustment, not economical
- Demand response
 - adjust the other side of the equation
 - potentially provides a cost-effective solution

Industrial Loads

Demand response resource (DRR)

- residential, commercial, industrial loads
- e.g. residential areas, electric vehicles, buildings, data centers, pumps, furnaces, fans, aluminum smelters, cement crushers, ...

Industrial load as DRR

- Advantages
 - infrastructure
 - already installed
 - response
 - large, fast, accurate
 - economic incentive
 - strong

- Challenges
 - reliability
 - critical safety constraint
 - complexity
 - production activities
 - granularity
 - power change response

Outline

Steel Plant as Demand Response Resource Steel Plant Scheduling Mathematical Model

2 Computation Methods Additional Constraints as Cuts Tailored branch and bound algorithm

3 Numerical Studies

Steel Manufacturing

Figure: Production process of steel manufacturing

Heat: a certain amount of metal (batch) - quantify the production throughput

Steel Plant Scheduling

One of the most difficult industrial processes for scheduling

- large-scale, multi-product, multi-stage, parallel equipment, critical production-related constraints, etc.
- thousands of binary variables

Energy intensive

- energy cost is significant
- great potential as demand response resource

Scheduling goal

- traditionally, minimize the make-span
- we consider daily scheduling and minimize its daily cost in electricity energy market

Resource Task Network (RTN)

Figure: Resource task network model for a steel plant

Mathematical Formulations

Constraints

resource balance

$$y_{s,t} = y_{s,t-1} + \sum_{k \in \mathbb{K}} \sum_{\theta=0}^{\tau_k} \Delta_{s,\theta}^k \cdot x_{k,t-\theta} \quad \forall s \in \mathbb{S}_{\neg \{\text{EL}\}}, \forall t$$
$$y_{\text{EL},t} = \sum_{k \in \mathbb{K}} \sum_{\theta=0}^{\tau_k} \Delta_{\text{EL},\theta}^k \cdot x_{k,t-\theta} \quad \forall t$$

- task execution
- waiting time
- product delivery

Objective

• minimize electricity cost

Additional constraints as cuts

In steel manufacturing

- many tasks are equivalent to each other
 - e.g. the decarburization of molten metal for two similar batches of products
- the casting sequence for heats belonging to the same casting group are pre-specified
 - e.g. from expert experiences or casting optimization
- impose an enforced processing order
 - thereby, reduce the search space of the MIP problem

Additional cuts

$$\sum_{t' \le t} (x_{k_1,t'} - x_{k_2,t'}) \ge 0 \quad \forall t, (k_1,k_2) \in \mathbb{O}$$

Tailored Branch and Bound Algorithm

Branch and Bound

- commercial solvers
 - e.g. CPLEX, Gurobi
 - powerful, but are designed for general optimization problems
- tailored by special features
 - the heats belonging to the same campaign group are generally processed close to each other

For each casting group

- leader (first heat) and followers (other heats)
- require the leader to be processed first
- require its followers to be processed within certain time ranges
 - pre-calculated time ranges, before optimization

Tailored Branch and Bound Algorithm

1: procedure TailoredBranchBound $q \leftarrow \text{Priority-Queue}()$ 2: ▷ pops largest objective first 3: $q2 \leftarrow \text{Priority-Queue}() \qquad \triangleright \text{ pops smallest objective first}$ q.push(SolveRelaxation({ })) 4. 5: q2.push(FindIntegerSolutionHeuristics()) 6: while q not empty do $(f, x, y, C) \leftarrow q.pop()$ 7: 8: q2.push(Rounding((f, x, y, C)))if q2.first - $f \leq \epsilon$ then 9: 10: return q2.pop() 11: else for C_i in BranchNodes(C) do 12: 13. $q.push(SolveRelaxation(C_i))$ end for 14: end if 15: 16. end while 17: end procedure

Figure 4. Tailored branch and bound algorithm

Tailored Branch and Bound Algorithm

1: function BranchNodes(C)
2: if C == { } then
3: return [(0, T), ..., (0, T)]
4: else
5:
$$k^* \leftarrow \arg \max_{k \in L, keys}(b_k - a_k)$$

6: if $b_{k^*} - a_{k^*} > \epsilon_d$ then
7: $m^* \leftarrow int(\frac{b_{k^*} - a_{k^*}}{2})$
8: { $k: (d_a, d_b)$ } $\leftarrow L[k^*]$
9: $C_1 \leftarrow [..., (a_{k^*}, m^*), (a_{k^*} + d_a, m^* + d_b), ...]$
10: $C_2 \leftarrow [..., (m^*, b_{k^*}), (m^* + d_a, b_{k^*} + d_b), ...]$
11: return { C_1, C_2 }
12: else
13: $k^* \leftarrow \arg \max_{k \in \mathbb{K}}(b_k - a_k)$
14: $m^* \leftarrow int(\frac{b_{k^*} - a_{k^*}}{2})$
15: $C_1 \leftarrow [..., (a_{k^*}, m^*), ...]$
16: $C_2 \leftarrow [..., (m^*, b_{k^*}), ...]$
17: return { C_1, C_2 }
18: end if
19: end if
20: end function

Figure 5. Branch by leader heats

Steel Plant Parameters

	Table: I	Nomina	l power	consun	nptior	ıs [M	W]	
equipment	EAF_1	EAF_2	AOD_1	AOD_2	LF_1	LF_2	CC_1	CC_2
power	85	85	2	2	2	2	7	7

Table: Steel heat/group correspondence

group	G_1	G_2	G_3	G_4	G_5	G_6
heats	$H_1 - H_4$	$H_{5} - H_{8}$	$H_9 - H_{12}$	$H_{13} - H_{17}$	$H_{18} - H_{20}$	$H_{21} - H_{24}$

Table: Nominal processing times [min]

heats	EAF_1	EAF_2	AOD_1	AOD_2	LF_1	LF_2	CC_1	CC_2
$\overline{H_1 - H_4}$	80	80	75	75	35	35	50	50
$H_{5} - H_{6}$	85	85	80	80	40	40	60	60
$H_7 - H_8$	85	85	80	80	20	20	55	55
$H_9 - H_{12}$	90	90	95	95	45	45	60	60
$H_{13} - H_{14}$	85	85	85	85	25	25	70	70
$H_{15} - H_{16}$	85	85	85	85	25	25	75	75
H_{17}	80	80	85	85	25	25	75	75
H_{18}	80	80	95	95	45	45	60	60
H_{19}	80	80	95	95	45	45	70	70
H_{20}	80	80	95	95	30	30	70	70
$H_{21} - H_{22}$	80	80	80	80	30	30	50	50
$H_{23} - H_{24}$	80	80	80	80	30	30	50	60

Computational Results

Groups		c0	c1	b1
	Obj(k\$)	24.553	24.553	24.698
G1-2	CPU(s)	5.8	3.7	6.2
	lpNum	2460	1985	57
	Obj(k\$)	39.306	39.308	39.665
G1-3	CPU(s)	155.4	60.7	50.0
	lpNum	9071	3835	228
	Obj(k\$)	57.857	57.857	58.694
G1-4	CPU(s)	60.4	42.7	197.8
	lpNum	3852	2745	280
	Obj(k\$)	86.352	86.352	86.799
G1-6	CPU(s)	104.9	80.4	2737.6
	lpNum	3698	2631	725

Table: Branch and bound results with $t_0 = 15 \text{min}$

Scheduling Comparison

B&B Iterations

Figure: Branch and bound iterations

Summary

- The proposed methods show potentials to make the computations more tractable
 - cuts to reduce search space
 - tailored b&b algorithm
 - cpu time, iteration number
- Make it more appealing for industrial plants such as steel plants to take part in demand response
- Outlook
 - find a better rounding method
 - more accurate modeling of steel plants
 - etc.

Power and productivity for a better world[™]

Thanks!

contact: xiaozhang@cmu.edu