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ABSTRACT

Non-Technical Loss (NTL) represents a major challenge
when providing reliable electrical service in developing
countries, where it often accounts for 11-15% of total
generation capacity [1]. NTL is caused by a variety of
factors such as theft, unmetered homes, and inability to
pay, which at volume can lead to system instability, grid
failure, and major financial losses for providers.

In this paper, we investigate error sources and tech-
niques for separating NTL from total losses in micro-
grids. We adopt and compare two classes of approaches
for detecting NTL: (1) model-driven and (2) data-driven.
The model-driven class considers the primary sources of
state uncertainty including line losses, meter consump-
tion, meter calibration error, packet loss, and sample
synchronization error. In the data-driven class, we use
two approaches that learn grid state based on training
data. The first approach uses a regression technique on
an NTL-free period of grid operation to capture the re-
lationship between state error and total consumption.
The second approach uses an SVM trained on synthetic
NTL data. Both classes of approaches can provide a
confidence interval based on the amount of detected
NTL. We experimentally evaluate and compare the ap-
proaches on wireless meter data collected from a 525-
home microgrid deployed in Les Anglais, Haiti. We see
that both are quite effective, but that the data-driven
class is significantly easier to implement. In both cases,
we are able to experimentally evaluate to what degree
we can reliably separate NTL from total losses.
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1. INTRODUCTION

As reported by the World Bank Group in 2011 [1],
Non-Technical Loss (NTL) accounts for 15% of total
generation capacity in the Latin America & Caribbean
market and 11% in the Sub-Saharan Africa markets.
Together with corruption and weak regulatory environ-
ments, NTL are a major contributor to the poor state of
operations of utilities in developing countries [2]. NTL
prevents utilities from achieving cost recovery because
they cannot fully pay for the cost of energy generated.
This leads to a vicious cycle: inability to pay for gen-
eration results in supply shortages that cause outages;
outages result in customer dissatisfaction, so even cus-
tomers who were paying for electricity may be less in-
clined to do so and may self-generate rather than pur-
chase electricity from the utility; a smaller customer
base results in even lower tariff collection, and then even
greater supply shortages.

Utilities would benefit greatly from being able to lo-
cate NTL and address the problem with consumers di-
rectly. Smart metering enables utilities to do this on a
real-time basis, whereas conventional metering systems
provide utilities with only a monthly resolution.

Theft is a large component of NTL on both central
and remote microgrids [3]. Most often, theft is carried
out by making an unauthorized connection to the micro-
grid distribution line. In other cases, theft is carried out
by authorized customers who bypass their meters. Mon-
itoring theft is therefore difficult, especially on systems
that serve a few hundred households. Theft is most of-
ten dealt with through strong local institutions that can
impose a credible threat of penalty. However, penalties
are often unenforced, and theft persists on many sys-
tems due to lack of visibility into losses.

In this paper, we discuss the detection of NTL in a ru-
ral microgrid deployment in Les Anglais (LA), Haiti. An



initial version of the microgrid was first described in [4],
which included wireless energy meters on 54 homes. The
system utilized excess capacity from a diesel generator
powering a local cellular tower. Over the last year, we
have updated the microgrid with a commercial version
of the system developed by SparkMeter Inc. The grid
now services more than 525 homes powered by a 93kW
solar PV array with 400kWh of battery capacity and an
auxiliary diesel backup generator. We use detailed char-
acteristics of the distribution network, communication
network and data traces collected from the microgrid
to compare and contrast three NTL approaches. The
first is a model-driven approach that estimates losses
using an Optimal Power Flow (OPF) simulator based
on detailed grid topology, shown in Figure 1. The sec-
ond approach uses a regression model that is trained on
an initial data collection period. The third approach is
SVM-based and is trained on synthetic NTL data.

One of the novel features of our underlying system
is the use of time synchronized sampling of power data
across the network to aid in separating NTL from total
losses. We determine the state of the microgrid sys-
tem by comparing all of our meter readings with a set
of totalizers (aggregators) installed at each generation
source. Ideally, the sum of the loads should match the
generation. However, there are multiple sources of error
including (1) line losses, (2) metering error, (3) meter
consumption, (4) temporal meter sampling jitter, and
(5) packet loss. We define this difference as the grid’s
State Error. Using real-world data collected from the
network, we explore the magnitude and implications of
each of these sources of error. We see that if available,
detailed modeling information (with some tuning based
on empirical data) is able to slightly outperform our
data-driven-only based detectors. However, the data
driven detectors are significantly easier to configure and
maintain with a level of performance that can still yield
action-able suggestions about when NTL occurs and
how much energy is missing.

2. RELATED WORK

Microgrids are typically developed by governments
agencies, private developers and NGOs as a means to
provide access to electricity in areas of the world where
it is financially, physically or institutionally difficult to
extend the reach of the central grid [3]. Microgrid de-
ployments range in scale and complexity from small
deployments such as DESI Power’s four village micro-
grids in Bihar, India powered by biomass gasification
[5] to the West Bengal Renewable Energy Development
Agency’s 18 microgrids powered primarily by solar PV
in the Sundarbans [6] to Nepal, which powers 59,000
households with over 300 micro-hydro systems [7]. These
grids also vary substantially in the services they provide.

Figure 1: Les Anglais microgrid topology

Some microgrids are designed to provide only the most
basic energy services, such as lighting in the evening,
while others are designed to power cold storage and
other productive commercial or agricultural loads such
as mills and irrigation pumps [8].

Modern microgrid developers are turning to advanced
low-cost pre-paid meters to solve problems of customer
over-use and poor tariff collection. Companies such as
Devergy [9], Circutor [10], Inensus [11], Powerhive [12]
and Gram Power [13] have each developed such meter-
ing systems targeted at microgrids serving low-income
customers. Even in their early stages, these systems
offer significant advantages over both conventional me-
tering systems and less sophisticated pre-paid meters
such as those made by Conlog [14]. Those advantages
include greater flexibility in billing, remote system mon-
itoring, price-responsive DSM, load-shedding, and dy-
namic power- and energy-limiting [15].

Unfortunately, many microgrids fall into non-functioning

states due to any one of a number of factors, including
low levels of tariff collection, poor maintenance, cus-
tomer over-usage (which causes brown-outs), and unmet
growth in demand [3]. Attempts at modeling microgrid
operations have shown that a number of interventions
can improve microgrid sustainability, such as the use
of renewable energy to improve cost-effectiveness [16]
[17] [18], energy efficiency [18], and the use of demand
side management (DSM) strategies and technologies [15]
[19]. However, NTL still stands as a factor that drasti-



Figure 2: Solar PV array with battery and diesel generation (left) and Sparkmeter hardware (right)

cally hinders all of these efforts. In this paper, we look
holistically at separation of NTL from total losses given
a model of the grid, its metering characteristics, and the
communication network used to collect data.

There have been multiple techniques proposed to de-
tect and even actively thwart non-technical loss that
range from policy to technical engineering methods. In
[20], the authors provide a rigorous analysis of the differ-
ent types of NTL and various existing solutions. Some of
the most common technical methods involve designing
tamper resistant meters and per-user trending of con-
sumption data over time. Managerial methods include
periodic line inspection and surveillance. [21] discusses
installing filters into smart meters and then injecting
destructive harmonics into the line that would destroy
any illegally attached appliances. [22] proposes a simi-
lar approach to our approach where meter readings at
branches within a distribution tree are aggregated and
compared in order to find power theft. The work is pro-
posed as a concept without any technical explanation
or evaluation. In [23], the authors propose an optimal
state-estimation approach for theft detection. This ap-
proach compares consumption with aggregators and at-
tempts to identify theft as a measurement bias. While
promising, the work is conducted entire in simulation
and not evaluated on real data. As we see in our real de-
ployment, some of the assumptions often applied when
modeling a grid are either hard to capture or fail to be
accurate in practice.

There have also been a number of efforts that use data
mining and machine learning in an attempt to classify
non-technical loss. [24, 25] use Support Vector Machines
(SVM) based on historical data and Genetic Algorithms
to identify abnormal patterns. These approaches often
fail in practice for two main reasons: (1) microgrids nat-
urally scale in size over time and (2) theft from the grid
is usually comprised of similar appliances as those found
in legally paying homes making individual signatures
nearly identical. In [26], the authors use a combina-

tion of network security, on meter tamper resistance and
non-intrusive load monitoring (NILM) to detect theft.
This approach looks at patterns in appliance on and
off transitions over time in order to detect anomalous
behavior. While promising, this approach assumes an
accurate NILM approach that is still difficult to achieve
in practice.

A project from The Impact Lab and Jamaica Pub-
lic Service (JPS) takes a machine learning approach for
detecting customer NTL by identifying changes in indi-
vidual home usage patterns over time [27]. Their goal
is to detect drops in consumption that would be indica-
tive of offloading appliances to unmetered lines. They
train a random decision forest classifier on individual 15
minute data collected per home. This approach shows
great promise and can be used in conjunction with our
proposed methods to not only detect NTL, but possi-
bly localize likely areas in the grid. Unlike approaches
that have access to totalizer data, the JPS approach is
unable to detect new NTL that is not simply offloading
from an existing metered home.

3. LES ANGLAIS MICROGRID

Figure 2 shows photos of the updated grid genera-
tion, as well as a picture of the Sparkmeter energy me-
ter installed on a home. As previously mentioned, the
latest grid installation is comprised of 525 homes that
are powered from a 93kW solar PV array, 400 kWh of
battery capacity and a small diesel backup generator.
The topology of the LA grid is shown in Figure 1, in
which different colors represent different subdivisions:
the thick (pink) lines represent the three-phase Medium
Voltage (MV) lines with a nominal voltage of 7.2kV. The
other subdivisions are single-phase Low Voltage (LV)
lines with a nominal voltage of 120V. The LV subdi-
visions are connected to the MV lines via split-phase
transformers and to individual houses via service drops.
There are three totalizer meters that collect aggregate
metering data for each of the three subdivisions powered



by each phase in the distribution system. The location
of each home was collected using GPS.

In total, there are 1102 meters of MV wiring in the
grid with relatively negligible loss given their low gauge
and high voltage. The LV lines, having an AWG of 2 and
a total combined length of 4210 meters which accounts
for the primary source of line loss. There are also three
transformers responsible for converting the MV to LV.
Typically, in a microgrid, approximately one-third of
loss is found in transformers and the rest in wiring.

The microgrid has been operating continuously for
more than 12 months. All of the meter readings are
synchronized and accompanied by logs of wireless com-
munication traffic along with a detailed description of
the physical grid topology. The full network reports
data from 525 homes every 15 minutes with each meter
sampling globally within approximately 10 milliseconds.
Figure 3 shows an example of the power consumed over
time of one home as well as the entire grid.

3.1 Synchronous Sampling

Meters communicate with a gateway responsible for
collecting data wirelessly using a proprietary protocol
built on IEEE 802.15.4. The network provides mesh
communication and time-synchronized sampling. The
protocol allows full control over network addressing and
route selection from the gateway while delivering a con-
sistent notion of time across the network. The gateway
individually polls each meter sequentially, updating sta-
tus information and requesting data. All requests are
either routed or flooded across the network. Each re-
quest from the gateway carries with it the current net-
work time and the synchronous sampling interval (or
heartbeat). At the moment of each heartbeat, all me-
ters will record the average power, voltage and current
of the previous heartbeat period. Additionally the en-
ergy, frequency, power factor and instantaneous power
are recorded for this exact moment in time. The net-
work maintains highly reliable synchronous sampling
by including the timing information in every outbound
packet from the gateway which can be overheard by any
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Figure 4: Microgrid modeling workflow

node. Timing data is adjusted on each hop across the
network to account for hop-delay. Testbed evaluations
indicate that the global heart-beat is accurate to below
oms.

4. COMPONENTS OF STATE ERROR

Our microgrid model relies on accurate topology infor-
mation, power readings from individual meters, and the
properties of wiring and equipment. These are used to
calculate the expected state error, the difference in total
power readings at the generation and the loads. State
error is made up of multiple components, each of which
must themselves be modeled. Figure 4 shows the work-
flow by which state error is calculated. The inputs are
fed into Gridlab-D, which performs an Optimal Power
Flow simulation to calculate line and transformer losses.
These losses and the house meter readings are then used
in a process which models the remaining components of
state error to generate a virtual totalizer power reading.
Finally, subtracting from the totalizer reading the sum
of all house meter readings yields an expected state er-
ror. The following sections describe in detail how the
components of state error are modeled.

4.1 Line Losses

We employ GridLAB-D as the engine to calculate the
power flow as well as our line loss statistics, using the
topology of the LA grid (i.e. how the houses, power
lines, service drops are connected to one another) as an
input. The power line traces are captured from an an-
notated satellite photo; the wire properties are derived
from the vendor data sheets; the pole locations are ob-
tained from the project records; the house locations are
imported from the GPS log. Our model assumes that
houses are connected to the nearest utility pole. While



this is not true for every house on the physical grid, it is
an adequate approximation for the purpose of simula-
tion. With this topology information, as well as the syn-
chronized measurement at each timestamp, we are able
to generate a GridLAB-D input file (.glm) that models
the instantaneous LA power grid. Next, GridLAB-D
calculates the power flow for that timestamp and saves
the results into an XML file. Finally, the XML file is
analyzed to give us the line loss summary and powerflow
at each node in the grid.

In order to understand the impact of line loss on en-
ergy NTL detection, the power flows of the LA grid are
simulated under multiple loading scenarios, with the as-
sumption of nominal line voltages. We simulate multi-
ple loading scenarios while varying the number of houses
connected to the grid. The first scenario represents the
current LA grid, where there are over 400 houses con-
nected by 6835 meters of service drops; the second sce-
nario restricts the number of houses connected at each
pole to be smaller or equal to 3, where 272 houses are
connected by 4631 meters of service drops; the last sce-
nario is the case that each pole can only connect 1 house,
where there are 104 houses and the length of service
drops is 1886 meters in total.

The power flows for the scenarios described above are
simulated every 15 minutes for 24 hours - there are 96
simulations for each scenario. The line loss and the total
load in the grid for each of these simulations are plotted
in Figure 5, where each point stands for a simulation.
From the plot, we observe that (1) the more houses con-
nected in the grid, the higher the percentage of line loss
to the total load; (2) under the same configuration, the
relationship between line loss and the total load appears
exponential.

4.2 Metering Error and Meter Consumption

Metering standards like IEC 61036 specify multiple
classes of meter accuracies that can range from 0.2%
to 2.5% in terms of maximum error at a given power
factor. After calibration, we see our meters generally
exhibit Gaussian error. In the LA grid, each meter is
2.0% accurate with a typical load limit of 30 W. At
maximum load each house would expect to see 0.6 W of
error. Assuming a summation of Gaussian distributions,
the magnitude of the noise will grow as the root mean
square of the total which is relatively small even for a
large number of nodes. For this reason, the aggregator’s
error is critical in that it has a larger impact than the
distributed meters and it directly bounds the system’s
ability to detect NTL.

The meters themselves have an average power con-
sumption of 2.0 Watts, which remains stable over time.
The meters do not account for their own power con-
sumption, however, their consumption is reflected in to-
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Figure 5: Simulated trace-based aggregate line
loss

talizer power readings because totalizers are installed
at points of generation. The house meter consumption
thus manifests as a constant positive component of state
error which must be accounted for.

4.3 Meter Sampling Jitter

Our method of NTL detection is fundamentally based
on comparing a single sample taken by a totalizer and a
summation of many distributed samples taken by wire-
less meters. In such a scheme, the times at which the
meter samples were taken can have a significant effect
on the final result. In order to understand this, we quan-
tify the impact that this sampling jitter has on the state
error calculation.

In the first stage of the LA microgrid deployment,
there was a period of a few weeks when data from 48
houses was being collected at 1Hz. We use this high-
speed data to extrapolate what would happen as the
jitter in sensor sampling increased. Figure 6 shows the
results of a state error simulation which contains a con-
trolled amount of sampling jitter and no other sources
of error. Instead of being perfectly synchronized, meter
samples are randomly selected (with a uniform distribu-
tion) from inside a synthetic jitter window, which has a
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Figure 6: Impact of jitter on state error



width measured in seconds. As the jitter window is in-
creased, the samples are de-synchronized. For instance,
in Figure 6 we see that when sampling within a 30-
second jitter window, the median state error is 0.29%;
whereas, sampling within a 15-minute window, which is
done by most conventional meters, results in a median
state error of 1.18%.

4.4 Packet Loss

Lost meter packets play an important role in measur-
ing the state of the system. If a meter does not report
a value in a particular cycle, there are numerous error
correction options including: (1) ignore the sampling pe-
riod, (2) use a previous value for the dropped reading,
(3) predict the value based on a model or (4) assume
the worst-case consumption of the missing meter. For
example, if a single meter value is missing we must in-
crease our tolerance for detecting NTL by the expected
consumption in that home during the period. Many
missing meter readings compounds the problem.

In the LA microgrid, over 72 days with a 15 minute
period, 94.03% of the meter polling periods returned
all of the meter values. Note that the gateway continu-
ously polls any missing meters until the start of the next
period allowing for ample low-level retry opportunities
(overall packet reception rate was >99.6%). Figure 7
shows the packet distributions associated with the net-
work failure cases. The top graph shows how often con-
secutive periods failed to collect data from all meters.
For example, there were 21 cases where the dropped
data was only for a single period (15 minutes), 14 cases
where it continued for two periods (30 minutes), and
so on. The three large blackouts were due to scheduled
grid maintenance. The bottom graph in Figure 7 shows
the distribution of how many meters would fail to reply
given a period that includes dropped messages. We see
that most drops include only a few meters, but there are
occasions when large areas of the network are unreach-
able. Given the reliability of the network and, we adopt
a scheme which ignores polling cycles with missing me-
ter readings. In practice this seems sufficient, and could
easily be improved with the use of previous values to
replace missing data points.

S. NTL DETECTORS

In this section, we build on our model of microgrid
losses by using it to implement a model-driven NTL
detector. We also propose two data-driven detectors
which, in contrast, rely on a training period. Both
classes of detectors are based on state error, the mis-
match between total energy seen by the meters and
the total energy seen by the totalizers. The detectors
use separate methods to calculate a detection threshold,
which is compared with state error to identify NTL.
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Figure 7: Network packet loss

5.1 Model-driven Detection

The model-driven detector identifies NTL by compar-
ing state error with a threshold derived from the mi-
crogrid loss model. The threshold combines expected
line-losses with a pre-defined buffer consisting of mul-
tiple other components. Calculations are made based
on instantaneous true power, which is sampled at all
meters simultaneously. Because the meter firmware was
designed around a TDMA network protocol which main-
tains millisecond-level time and implements synchronous
sampling, it was not necessary to incorporate meter
sampling jitter into the model-driven detector. Packet
loss after link-level retries was also found to be negligi-
ble in the real-world deployment, thus the few instances
of packet loss were safely ignored without affecting the
final results.

For a value of time ¢, the value of the detector thresh-
old in Watts is given by

dn(t) =m+1(t) +u

where m is the average combined power consumption
of the meters, [(¢) is the line losses at time ¢, and u
is a user-specified margin. The power consumption of
the meters is captured by the totalizers but not by the
meters themselves, and thus adds to the state error.
Line losses are time-varying and depend not only on line
properties but also the magnitudes and locations of all
loads in the microgrid. The user-specified margin can
be chosen based on the desired sensitivity and specificity
of detection.
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Figure 8: Regression model of state error

5.2 Regression Detector

Much like the model-driven detector, the regression-
based detector compares state error with a threshold
to identify NTL. However, this detector does not in-
corporate any grid-topology-specific modeling in its cal-
culations. The regression-based detector is based on an
exponential regression, shown in Figure 8, that captures
the relationship between power consumption measured
by the totalizer at a point in time and the state error
at the same point in time. For accurate detection, the
shape of the detector must be learned by calculating the
regression from past data that does not contain NTL.
The detector threshold is then equal to the regression,
with the addition of a constant buffer based on the state
error deviation from the regression line.

For a given value of power P, the value of the data-
driven detector threshold is given by

d.(P) =axe™f +¢

where a and b are the regression variables and c is the
value of the constant buffer. The buffer is calculated
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Figure 9: Histogram of state error deviation
from regression

from the distibution of state error around the regression
line, shown in Figure 9. In practice, we found that a
buffer equal to the 2-sigma deviation of state error is
appropriate for NTL detection.

5.3 SVM Detector

In the previous regression model, we attempt to model
the typical distribution of state-error with respect to to-
tal consumption. This has the favorable property that it
does not require labeled NTL data. In contrast, we eval-
uate a detector using Support Vector Machine (SVM)
to detect NTL. Similar to the regression approach, the
SVM classifies NTL based on the totalizer value as well
as the state error at each point in time. In order to train
the system, we artificially remove a subset of metered
homes to synthesize NTL when training the model. The
SVM is then trained as a binary classifier (NTL or NTL-
free) with a confidence based on the distance from the
support vector. The amount of NTL can be inferred
from the state-error as compared to the NTL-free state
error. Since the state error tends to have a high vari-
ance that increases with higher totalizer power, a radial
basis kernel function (RBF) is adopted to learn a non-
linear decision boundary to improve accuracy. A stan-
dard SVM optimization problem and the RBF kernel
function K (x,y) is given by

!
. L 7
subject to yi(wh ¢(z;) +b) > 1 -,
§& >0

K(z,y) = ¢(2) ¢ (y) = exp(—llz — yI[*),
>0

where z; is the training vector which contains the
value of totalizer and state error, ¢ is a function that
maps variables x; to a higher dimension, C'is the penalty
parameter of error estimations, and ~ is the kernel pa-
rameter that is used to replace the dot product term
in order to find non-linear boundaries. In order to pre-
vent over fitting, the parameters C' and v are carefully
selected through grid search and 10-fold cross valida-
tion during the training phase. The output of the SVM
is a binary classification where given a totalizer value
and a state error value it will determine if there is NTL
or not. The amount of NTL can be determined based
off of the state error and the distance from the support
vector. There is a trade-off between how aggressive the
SVM performs in terms of detecting low levels of loss
and the number of false positives. When training the
SVM, it is possible to adjust the threshold for what is
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classifed as NTL in order to make the detector more or
less conservative. In practice, we iteratively raise the
NTL threshold in the training data until there are no
false positives. This makes for a conservative detector,
but one that will not constantly alarm grid operators.

6. EXPERIMENTAL EVALUATION

In this section, we experimentally evaluate implemen-
tations of the model-driven, regression-based, and SVM-
based NTL detectors. Our evaluations employ a data-
set containing 8 weeks of meter data from 525 house-
holds, collected at a 15-minute period. Each meter read-
ings contains information pertaining to voltage, current,
frequency, true power, power factor, meter state, up-
time, as well as time-keeping and customer-related data.
Totalizers are based on the same hardware as household
meters and transmit the same information back to the
network gateway. At the time of this work, certain parts
of the microgrid were not yet outfitted with totalizers,
thus our experiments focus on the 130 households in
the "downtown” subdivision which are accounted for by
a totalizer. The combined power consumption of the
130 households generally varies between 500 Watts and
1500 Watts, occasionally reaching peaks of over 2500
Watts.

Each detection approach was evaluated based on the
the same 8-week data-set, with the first 4 weeks used as
the training set and the next 4 weeks as the test set. Re-
alistic NTL levels were simulated by leaving randomly
selected meters out of the customer group and treat-
ing their consumption as NTL. This method is advan-
tageous because it relies on real-world traces of con-
sumption and it accurately simulates the side-effect of

increased N'TL, such as increased line losses. Figure 10
illustrates how (a) raw state error is combined with (b)
NTL to form the state error as seen by (c) the generic
detector. Any point in time at which the state error
rises above the threshold is interpreted as the detection
of NTL. One can observe an instance of NTL not being
successfully detected and also an erroneous detection at
a time of no NTL.

As stated earlier, the model-driven detector threshold
is defined by d,(t) = m + I(t) + w. In our evaluations
of the model-driven detector, m has a value of 260 W
to account for 130 meters with 2 Watt average power
consumption, [(t) is computed using Gridlab-D, and u
is assigned a value of 30 W as a buffer against noise.
The resulting detector has a true positive rate over 97%
for instances of NTL over 40 W, where the true positive
rate is the percentage of occurrences of NTL success-
fully detected. The detector also has an overall true
negative rate of 98.7%, where the true negative rate is
the percentage of occurrences lacking NTL that are cor-
rectly identified. For the regression-based detector, we
have defined the threshold as d,.(P) = a % e*F 4 c. Af-
ter calculating the exponential regression using the first

Amount of NTL (Watts)

0 1-20  20-40 40-60 60-80 80-100

Model 98.7% 6.4% 57.6% 97.9% 100% 100%
Reg. 99.5% 5.1% 59.0% 94.8% 91.1% 94.6%
SVM  100% 5.7% 51.2% 96.9% 99.4% 99.9%

Table 1: True negative rates and true posi-
tive rates between model-driven, regression, and
SVM approaches, given different levels of NTL



Amount of NTL (Watts)

Amount of NTL (Watts)

0 1-20  20-40 40-60 60-80 80-100 0 1-20  20-40 40-60 60-80 80-100
7-day  98.3 10.5% 64.9% 94.0% 91.1% 94.6% 7-day 100% 1.1% 23.6% 92.8% 99.4% 99.4%
3-day 99.2 7.3% 58.7% 932% 91.1% 94.6% 3-day 100% 1.1% 18.6% 85.4% 99.2% 99.3%
I-day 99.7% 2.7% 59.0% 84.8% 91.1% 94.6% 1-day 99.9% 3.9% 29.8% 83.8% 99.1% 99.2%

Table 2: True negative rates and true positive
rates of regression-based approach with respect
to training duration, given different levels of
NTL

4 weeks of the data-set as the learning period, we find
the relationship between totalizer power and detector
threshold to be a = 261.5,b = 1.5 % 1074, ¢ = 34.2. The
resulting detector has a true positive rate over 90% for
instances of NTL over 40 W, and an overall true neg-
ative rate of 99.5%. Lastly, the SVM-based detector is
evaluated, using the same training and testing data-set
as the previous two approaches. It is found to have a
true positive rate of over 96% for instances of NTL over
40 W, and an overall true negative rate of 100%.

More detailed detection results can be found in Ta-
ble 1, which compares the detection rates of the three
approaches given different levels of NTL. Column 0 con-
tains the true negative rate of each approach, while the
rest of the columns represent the true positive rates of
their respective bins. For example, the cell in the first
row and fourth column indicates that for instances of
NTL measuring between 40 W and 60 W the model-
driven approach has a true positive rate of 97.9%. Of
note here is the fact that all methods detect more accu-
rately as the level of NTL is increased, with the model-
driven and SVM approaches performing marginally bet-
ter than the regression-based approach. In addition,
the results suggest that the model-driven approached is
slightly biased towards detecting smaller values of NTL,
while the SVM-based approach has been successfully bi-
ased towards avoiding false positives.

Lastly, we explored the impact of the training pe-
riod duration on the data-driven approaches’ ability to
detect NTL. Table 2 contains the true negative rates
and true positive rates of the regression-based approach,
given a small training period and different levels of NTL.
Table 3 contains the same information for the SVM ap-
proach. The binning of data points in both tables is
structured identically to the binning in Table 1. Sur-
prisingly, we find that in both cases even one day of
training is enough to achieve performance comparable
to that of a 4-week training period. One explanation for
this is that, after more than a year of operation, the Les
Anglais microgrid has reached a steady state that does
necessitate a long training period. Further data collec-
tion and analysis will be required to verify whether this
holds true over the long term.

Table 3: True negative rates and true positive
rates of SVM approach with respect to training
duration, given different levels of NTL

7. CONCLUSIONS

In conclusion, this paper presents a case study that
evaluates how multiple forms of modeling in conjunction
with synchronous sampling can be used to estimate the
NTL within a microgrid. We show that line loss, sam-
pling jitter and sensing error contribute significantly to
the noise present in a metering system. We propose two
classes of NTL detectors that look at state error, which
is defined as the difference between totalizers typically
located at generators and the sum of all of the meters
in a microgrid. By both modeling and reducing (with
synchronous sampling) the various sources of grid state
error we are able to reliably detect NTL on the order
of 1.6% (40W out of 2.5kW load) on a 525-household
microgrid with a false positive rate lower than 2%.

We show how a detailed grid simulation using optimal
power flow modeling on GPS mapped sources compares
to two data-driven approaches. The first data-driven
approach constructs a regression model based on a pe-
riod of grid operation that is assumed to be NTL-free.
This would ideally be captured shortly after a grid is in-
stalled. The second approach trains a binary SVM clas-
sifier based on synthetic NTL data generated by leaving
a random subset of meters out of the aggregate power
expression when computing state error. In general, we
see that all of the approaches are quite similar, but the
data-driven approaches require significantly less config-
uration data, making them easier to correctly imple-
ment. On the other hand, the data-driven approaches
only classify NTL and provide less information about
how the grid is performing. Detailed grid models have
the benefit of being able to help optimize grid operations
and plan the placement of new customers and sources
of generation.

We believe that our approaches provide a valuable
tool for grid operators and we are continuing to investi-
gate mechanisms that learn system parameters at run-
time to decrease the error detection tolerances. In the
future, we intend to investigate localizing NTL through
multiple distributed aggregators and by analyzing indi-
vidual household trends.
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